![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > minturi |
Description: Reverse inference form of df-mintu 373 (Contributed by la korvo, 6-Aug-2023.) |
Ref | Expression |
---|---|
minturi.0 | ⊢ ko'a .o ko'e ckaji ko'i |
Ref | Expression |
---|---|
minturi | ⊢ ko'a mintu ko'e ko'i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minturi.0 | . 2 ⊢ ko'a .o ko'e ckaji ko'i | |
2 | df-mintu 373 | . 2 ⊢ go ko'a mintu ko'e ko'i gi ko'a .o ko'e ckaji ko'i | |
3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a mintu ko'e ko'i |
Colors of variables: sumti selbri bridi |
Syntax hints: .o sjo 197 ckaji sbckaji 342 mintu sbmintu 371 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-mintu 373 |
This theorem is referenced by: mintu-refl 376 du-mintu 378 simsa-mintu 379 |
Copyright terms: Public domain | W3C validator |