| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > du-mintu | |||
| Description: Suggested by baseline definition of {mintu}: {du} is {mintu} without a standard of comparison, which is a stronger condition. (Contributed by la korvo, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| du-mintu.0 | ⊢ ko'a du ko'e |
| Ref | Expression |
|---|---|
| du-mintu | ⊢ ko'a mintu ko'e ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tss 2 | . . 3 brirebla ckaji ko'i | |
| 2 | du-mintu.0 | . . . 4 ⊢ ko'a du ko'e | |
| 3 | 2 | dui 252 | . . 3 ⊢ ro bu'a zo'u ko'a .o ko'e bu'a |
| 4 | 1, 3 | ax-ro-inst-2u 242 | . 2 ⊢ ko'a .o ko'e ckaji ko'i |
| 5 | 4 | minturi 375 | 1 ⊢ ko'a mintu ko'e ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: tsb 1 tss 2 .o sjo 197 ckaji sbckaji 342 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-ro-inst-2u 242 |
| This theorem depends on definitions: df-go 83 df-du 251 df-mintu 373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |