brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > du-mintu |
Description: Suggested by baseline definition of {mintu}: {du} is {mintu} without a standard of comparison, which is a stronger condition. (Contributed by la korvo, 25-Jun-2024.) |
Ref | Expression |
---|---|
du-mintu.0 | ⊢ ko'a du ko'e |
Ref | Expression |
---|---|
du-mintu | ⊢ ko'a mintu ko'e ko'i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsb 1 | . . . 4 brirebla ckaji | |
2 | 1 | tss 2 | . . 3 brirebla ckaji ko'i |
3 | du-mintu.0 | . . . 4 ⊢ ko'a du ko'e | |
4 | 3 | dui 216 | . . 3 ⊢ ro bu'a zo'u ko'a .o ko'e bu'a |
5 | 2, 4 | ax-ro-inst-2u 207 | . 2 ⊢ ko'a .o ko'e ckaji ko'i |
6 | 5 | minturi 338 | 1 ⊢ ko'a mintu ko'e ko'i |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 .o sjo 166 ckaji sbckaji 305 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 ax-ro-inst-2u 207 |
This theorem depends on definitions: df-go 61 df-du 215 df-mintu 336 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |