Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  du-mintu

Theorem du-mintu 304
Description: Suggested by baseline definition of {mintu}: {du} is {mintu} without a standard of comparison, which is a stronger condition. (Contributed by la korvo, 25-Jun-2024.)
Hypothesis
Ref Expression
du-mintu.0ko'a du ko'e
Assertion
Ref Expression
du-mintuko'a mintu ko'e ko'i

Proof of Theorem du-mintu
Dummy variable bu'a is distinct from all other variables.
StepHypRef Expression
1 tsb 1 . . . 4 brirebla ckaji
21tss 2 . . 3 brirebla ckaji ko'i
3 du-mintu.0 . . . 4ko'a du ko'e
43dui 198 . . 3ro bu'a zo'u ko'a .o ko'e bu'a
52, 4ax-ro-inst-2u 191 . 2ko'a .o ko'e ckaji ko'i
65minturi 301 1ko'a mintu ko'e ko'i
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  .o sjo 152  ckaji sbckaji 268
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-ro-inst-2u 191
This theorem depends on definitions:  df-go 52  df-du 197  df-mintu 299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator