Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  du-mintu

Theorem du-mintu 378
Description: Suggested by baseline definition of {mintu}: {du} is {mintu} without a standard of comparison, which is a stronger condition. (Contributed by la korvo, 25-Jun-2024.)
Hypothesis
Ref Expression
du-mintu.0ko'a du ko'e
Assertion
Ref Expression
du-mintuko'a mintu ko'e ko'i

Proof of Theorem du-mintu
Dummy variable bu'a is distinct from all other variables.
StepHypRef Expression
1 tss 2 . . 3 brirebla ckaji ko'i
2 du-mintu.0 . . . 4ko'a du ko'e
32dui 252 . . 3ro bu'a zo'u ko'a .o ko'e bu'a
41, 3ax-ro-inst-2u 242 . 2ko'a .o ko'e ckaji ko'i
54minturi 375 1ko'a mintu ko'e ko'i
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2   .o sjo 197   ckaji sbckaji 342
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-ro-inst-2u 242
This theorem depends on definitions:  df-go 83  df-du 251  df-mintu 373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator