brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > go-ganaid |
Description: Deduction form of go-ganai 63 (Contributed by la korvo, 4-Jan-2025.) |
Ref | Expression |
---|---|
go-ganaid.0 | ⊢ ganai broda gi go brode gi brodi |
Ref | Expression |
---|---|
go-ganaid | ⊢ ganai broda gi ganai brode gi brodi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | go-ganaid.0 | . 2 ⊢ ganai broda gi go brode gi brodi | |
2 | bi1 66 | . 2 ⊢ ganai go brode gi brodi gi ganai brode gi brodi | |
3 | 1, 2 | syl 20 | 1 ⊢ ganai broda gi ganai brode gi brodi |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 go bgo 60 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 |
This theorem depends on definitions: df-go 61 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |