| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > go-ganaid | |||
| Description: Deduction form of go-ganai 85 (Contributed by la korvo, 4-Jan-2025.) |
| Ref | Expression |
|---|---|
| go-ganaid.0 | ⊢ ganai broda gi go brode gi brodi |
| Ref | Expression |
|---|---|
| go-ganaid | ⊢ ganai broda gi ganai brode gi brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | go-ganaid.0 | . 2 ⊢ ganai broda gi go brode gi brodi | |
| 2 | bi1 88 | . 2 ⊢ ganai go brode gi brodi gi ganai brode gi brodi | |
| 3 | 1, 2 | syl 21 | 1 ⊢ ganai broda gi ganai brode gi brodi |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 go bgo 82 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |