Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  bi1

Theorem bi1 66
Description: Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
bi1ganai go broda gi brode gi ganai broda gi brode

Proof of Theorem bi1
StepHypRef Expression
1 df-go 61 . . 3ge ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda gi ganai ge ganai broda gi brode gi ganai brode gi broda gi go broda gi brode
21ge-lei 46 . 2ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda
32ge-led 47 1ganai go broda gi brode gi ganai broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 42  go bgo 60
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43
This theorem depends on definitions:  df-go 61
This theorem is referenced by:  go-ganaid  69  go-com-lem  74
  Copyright terms: Public domain W3C validator