![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > bi1 |
Description: Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
bi1 | ⊢ ganai go broda gi brode gi ganai broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-go 83 | . . 3 ⊢ ge ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda gi ganai ge ganai broda gi brode gi ganai brode gi broda gi go broda gi brode | |
2 | 1 | ge-lei 51 | . 2 ⊢ ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda |
3 | 2 | ge-led 52 | 1 ⊢ ganai go broda gi brode gi ganai broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ge bge 47 go bgo 82 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 |
This theorem depends on definitions: df-go 83 |
This theorem is referenced by: go-ganaid 91 go-com-lem 96 |
Copyright terms: Public domain | W3C validator |