Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  bi2

Theorem bi2 67
Description: Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
bi2ganai go broda gi brode gi ganai brode gi broda

Proof of Theorem bi2
StepHypRef Expression
1 df-go 61 . . 3ge ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda gi ganai ge ganai broda gi brode gi ganai brode gi broda gi go broda gi brode
21ge-lei 46 . 2ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda
32ge-red 49 1ganai go broda gi brode gi ganai brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 42  go bgo 60
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44
This theorem depends on definitions:  df-go 61
This theorem is referenced by:  go-com-lem  74
  Copyright terms: Public domain W3C validator