![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > ga-pair |
Description: A universal property of coproducts: given two arrows in Loj, there is an arrow from the coproduct of their sources to the coproduct of their targets. (Contributed by la korvo, 14-Jul-2025.) |
Ref | Expression |
---|---|
ga-pair.0 | ⊢ ganai broda gi brode |
ga-pair.1 | ⊢ ganai brodi gi brodo |
Ref | Expression |
---|---|
ga-pair | ⊢ ganai ga broda gi brodi gi ga brode gi brodo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ga-pair.0 | . . 3 ⊢ ganai broda gi brode | |
2 | 1 | ga-lid 177 | . 2 ⊢ ganai broda gi ga brode gi brodo |
3 | ga-pair.1 | . . 3 ⊢ ganai brodi gi brodo | |
4 | 3 | ga-rid 178 | . 2 ⊢ ganai brodi gi ga brode gi brodo |
5 | 2, 4 | ga-sum 167 | 1 ⊢ ganai ga broda gi brodi gi ga brode gi brodo |
Colors of variables: sumti selbri bridi |
Syntax hints: ga bga 160 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-ga 161 |
This theorem is referenced by: ga-pairl 180 ga-pairr 181 |
Copyright terms: Public domain | W3C validator |