![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > zilcmi-nomei |
Description: The empty set is a set. (Contributed by la korvo, 19-Sep-2024.) |
Ref | Expression |
---|---|
zilcmi-nomei | ⊢ le nomei ku zilcmi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-refl 256 | . . 3 ⊢ le nomei ku du le nomei ku | |
2 | ga-lin 165 | . . 3 ⊢ ganai le nomei ku du le nomei ku gi ga le nomei ku du le nomei ku gi su'o da zo'u da cmima le nomei ku | |
3 | 1, 2 | ax-mp 10 | . 2 ⊢ ga le nomei ku du le nomei ku gi su'o da zo'u da cmima le nomei ku |
4 | df-zilcmi 460 | . 2 ⊢ go le nomei ku zilcmi gi ga le nomei ku du le nomei ku gi su'o da zo'u da cmima le nomei ku | |
5 | 3, 4 | bi-rev 102 | 1 ⊢ le nomei ku zilcmi |
Colors of variables: sumti selbri bridi |
Syntax hints: ga bga 160 du sbdu 250 cmima sbcmima 319 le snomei 323 su'o bsd 414 zilcmi sbzilcmi 459 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-qi2 239 |
This theorem depends on definitions: df-go 83 df-ga 161 df-o 198 df-du 251 df-zilcmi 460 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |