![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > na.a-refl |
Description: {na.a} is reflexive over any brirebla. (Contributed by la korvo, 14-Aug-2024.) |
Ref | Expression |
---|---|
na.a-refl | ⊢ ko'a na.a ko'a bo'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ganai ko'a bo'a gi ko'a bo'a | |
2 | 1 | naari 113 | 1 ⊢ ko'a na.a ko'a bo'a |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-na.a 110 |
This theorem is referenced by: gripau-refl 338 |
Copyright terms: Public domain | W3C validator |