brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > naari |
Description: Reverse inference form of df-na.a 88 (Contributed by la korvo, 17-Aug-2023.) |
Ref | Expression |
---|---|
naari.0 | ⊢ ganai ko'a bo'a gi ko'e bo'a |
Ref | Expression |
---|---|
naari | ⊢ ko'a na.a ko'e bo'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naari.0 | . 2 ⊢ ganai ko'a bo'a gi ko'e bo'a | |
2 | df-na.a 88 | . 2 ⊢ go ko'a na.a ko'e bo'a gi ganai ko'a bo'a gi ko'e bo'a | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ ko'a na.a ko'e bo'a |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 ganai bgan 9 na.a sjnaa 87 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-na.a 88 |
This theorem is referenced by: na.a-refl 92 gripauris 300 |
Copyright terms: Public domain | W3C validator |