![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > gripau-refl |
Description: {gripau} is reflexive. (Contributed by la korvo, 15-Jul-2024.) |
Ref | Expression |
---|---|
gripau-refl | ⊢ ko'a gripau ko'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | na.a-refl 114 | . . 3 ⊢ ko'a na.a ko'a se cmima ko'i | |
2 | 1 | sei 214 | . 2 ⊢ ko'i cmima ko'a na.a ko'a |
3 | 2 | gripauri 334 | 1 ⊢ ko'a gripau ko'a |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 na.a sjnaa 109 se sbs 212 cmima sbcmima 319 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-na.a 110 df-se 213 df-gripau 332 |
This theorem is referenced by: gripau-kinra 544 |
Copyright terms: Public domain | W3C validator |