Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripau-refl

Theorem gripau-refl 264
Description: {gripau} is reflexive. (Contributed by la korvo, 15-Jul-2024.)
Assertion
Ref Expression
gripau-reflko'a gripau ko'a

Proof of Theorem gripau-refl
StepHypRef Expression
1 na.a-refl 82 . . 3ko'a na.a ko'a se cmima ko'e
21sei 169 . 2ko'e cmima ko'a na.a ko'a
32gripauri 260 1ko'a gripau ko'a
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  na.a sjnaa 77  se sbs 167  cmima sbcmima 246
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-na.a 78  df-se 168  df-gripau 258
This theorem is referenced by:  gripau-kinra  447
  Copyright terms: Public domain W3C validator