brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gripau-refl |
Description: {gripau} is reflexive. (Contributed by la korvo, 15-Jul-2024.) |
Ref | Expression |
---|---|
gripau-refl | ⊢ ko'a gripau ko'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | na.a-refl 92 | . . 3 ⊢ ko'a na.a ko'a se cmima ko'e | |
2 | 1 | sei 183 | . 2 ⊢ ko'e cmima ko'a na.a ko'a |
3 | 2 | gripauri 297 | 1 ⊢ ko'a gripau ko'a |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 na.a sjnaa 87 se sbs 181 cmima sbcmima 282 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-na.a 88 df-se 182 df-gripau 295 |
This theorem is referenced by: gripau-kinra 489 |
Copyright terms: Public domain | W3C validator |