Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripau-refl

Theorem gripau-refl 301
Description: {gripau} is reflexive. (Contributed by la korvo, 15-Jul-2024.)
Assertion
Ref Expression
gripau-reflko'a gripau ko'a

Proof of Theorem gripau-refl
StepHypRef Expression
1 na.a-refl 92 . . 3ko'a na.a ko'a se cmima ko'e
21sei 183 . 2ko'e cmima ko'a na.a ko'a
32gripauri 297 1ko'a gripau ko'a
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  na.a sjnaa 87  se sbs 181  cmima sbcmima 282
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-na.a 88  df-se 182  df-gripau 295
This theorem is referenced by:  gripau-kinra  489
  Copyright terms: Public domain W3C validator