Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripau-refl

Theorem gripau-refl 338
Description: {gripau} is reflexive. (Contributed by la korvo, 15-Jul-2024.)
Assertion
Ref Expression
gripau-reflko'a gripau ko'a

Proof of Theorem gripau-refl
StepHypRef Expression
1 na.a-refl 114 . . 3ko'a na.a ko'a se cmima ko'i
21sei 214 . 2ko'i cmima ko'a na.a ko'a
32gripauri 334 1ko'a gripau ko'a
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2   na.a sjnaa 109   se sbs 212   cmima sbcmima 319
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83  df-na.a 110  df-se 213  df-gripau 332
This theorem is referenced by:  gripau-kinra  544
  Copyright terms: Public domain W3C validator