| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > gripauri | |||
| Description: Reverse inference form of df-gripau 332 (Contributed by la korvo, 15-Jul-2024.) |
| Ref | Expression |
|---|---|
| gripauri.0 | ⊢ ko'i cmima ko'a na.a ko'e |
| Ref | Expression |
|---|---|
| gripauri | ⊢ ko'a gripau ko'e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gripauri.0 | . 2 ⊢ ko'i cmima ko'a na.a ko'e | |
| 2 | df-gripau 332 | . 2 ⊢ go ko'a gripau ko'e gi ko'i cmima ko'a na.a ko'e | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a gripau ko'e |
| Colors of variables: sumti selbri bridi |
| Syntax hints: na.a sjnaa 109 cmima sbcmima 319 gripau sbgripau 331 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-gripau 332 |
| This theorem is referenced by: gripauris 337 gripau-refl 338 |
| Copyright terms: Public domain | W3C validator |