Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripauri

Theorem gripauri 260
Description: Reverse inference form of df-gripau 258 (Contributed by la korvo, 15-Jul-2024.)
Hypothesis
Ref Expression
gripauri.0ko'i cmima ko'a na.a ko'e
Assertion
Ref Expression
gripauriko'a gripau ko'e

Proof of Theorem gripauri
StepHypRef Expression
1 gripauri.0 . 2ko'i cmima ko'a na.a ko'e
2 df-gripau 258 . 2go ko'a gripau ko'e gi ko'i cmima ko'a na.a ko'e
31, 2bi-rev 70 1ko'a gripau ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  na.a sjnaa 77  cmima sbcmima 246  gripau sbgripau 257
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-gripau 258
This theorem is referenced by:  gripauris  263  gripau-refl  264
  Copyright terms: Public domain W3C validator