brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gripauri |
Description: Reverse inference form of df-gripau 258 (Contributed by la korvo, 15-Jul-2024.) |
Ref | Expression |
---|---|
gripauri.0 | ⊢ ko'i cmima ko'a na.a ko'e |
Ref | Expression |
---|---|
gripauri | ⊢ ko'a gripau ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gripauri.0 | . 2 ⊢ ko'i cmima ko'a na.a ko'e | |
2 | df-gripau 258 | . 2 ⊢ go ko'a gripau ko'e gi ko'i cmima ko'a na.a ko'e | |
3 | 1, 2 | bi-rev 70 | 1 ⊢ ko'a gripau ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: na.a sjnaa 77 cmima sbcmima 246 gripau sbgripau 257 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 df-gripau 258 |
This theorem is referenced by: gripauris 263 gripau-refl 264 |
Copyright terms: Public domain | W3C validator |