brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gripauri |
Description: Reverse inference form of df-gripau 295 (Contributed by la korvo, 15-Jul-2024.) |
Ref | Expression |
---|---|
gripauri.0 | ⊢ ko'i cmima ko'a na.a ko'e |
Ref | Expression |
---|---|
gripauri | ⊢ ko'a gripau ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gripauri.0 | . 2 ⊢ ko'i cmima ko'a na.a ko'e | |
2 | df-gripau 295 | . 2 ⊢ go ko'a gripau ko'e gi ko'i cmima ko'a na.a ko'e | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ ko'a gripau ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: na.a sjnaa 87 cmima sbcmima 282 gripau sbgripau 294 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-gripau 295 |
This theorem is referenced by: gripauris 300 gripau-refl 301 |
Copyright terms: Public domain | W3C validator |