Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripau-kinra

Theorem gripau-kinra 489
Description: {gripau} is reflexive over any domain. (Contributed by la korvo, 19-Jul-2024.)
Assertion
Ref Expression
gripau-kinra1 ka ce'u gripau ce'u kei kinra ko'e

Proof of Theorem gripau-kinra
Dummy variable da is distinct from all other variables.
StepHypRef Expression
1 gripau-refl 301 . 2da gripau da
21refl-kinra 487 11 ka ce'u gripau ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  gripau sbgripau 294
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen1 193
This theorem depends on definitions:  df-go 61  df-na.a 88  df-se 182  df-gripau 295  df-ckini 312  df-poi-ro 414  df-kinra 485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator