Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripau-kinra

Theorem gripau-kinra 544
Description: {gripau} is reflexive over any domain. (Contributed by la korvo, 19-Jul-2024.)
Assertion
Ref Expression
gripau-kinrapa ka ce'u gripau ce'u kei kinra ko'e

Proof of Theorem gripau-kinra
Dummy variable da is distinct from all other variables.
StepHypRef Expression
1 gripau-refl 338 . 2da gripau da
21refl-kinra 542 1pa ka ce'u gripau ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:   gripau sbgripau 331
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen1 224
This theorem depends on definitions:  df-go 83  df-na.a 110  df-se 213  df-gripau 332  df-ckini 349  df-poi-ro 465  df-kinra 540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator