Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  refl-kinra

Theorem refl-kinra 542
Description: If a selbri is reflexive over any metasyntactic terbri, then it is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.)
Hypothesis
Ref Expression
refl-kinra.0da bu'a da
Assertion
Ref Expression
refl-kinrapa ka ce'u bu'a ce'u kei kinra ko'e

Proof of Theorem refl-kinra
StepHypRef Expression
1 refl-kinra.0 . . . 4da bu'a da
21ckiniri 351 . . 3da ckini da pa ka ce'u bu'a ce'u kei
32poi-gen 468 . 2ro da poi ke'a cmima ko'e ku'o zo'u da ckini da pa ka ce'u bu'a ce'u kei
43kinrari 541 1pa ka ce'u bu'a ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2   cmima sbcmima 319   ce'u sc 340   pa spk 341
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen1 224
This theorem depends on definitions:  df-go 83  df-ckini 349  df-poi-ro 465  df-kinra 540
This theorem is referenced by:  du-kinra  543  gripau-kinra  544  pagbu-kinra  631  kihirnihi-kinra  680
  Copyright terms: Public domain W3C validator