brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > refl-kinra |
Description: If a selbri is reflexive over any metasyntactic terbri, then it is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.) |
Ref | Expression |
---|---|
refl-kinra.0 | ⊢ da bu'a da |
Ref | Expression |
---|---|
refl-kinra | ⊢ 1 ka ce'u bu'a ce'u kei kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refl-kinra.0 | . . . 4 ⊢ da bu'a da | |
2 | 1 | ckiniri 314 | . . 3 ⊢ da ckini da 1 ka ce'u bu'a ce'u kei |
3 | 2 | poi-gen 417 | . 2 ⊢ ro da poi ke'a cmima ko'e ku'o zo'u da ckini da 1 ka ce'u bu'a ce'u kei |
4 | 3 | kinrari 486 | 1 ⊢ 1 ka ce'u bu'a ce'u kei kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 cmima sbcmima 282 ce'u sc 303 1 spk 304 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 ax-gen1 193 |
This theorem depends on definitions: df-go 61 df-ckini 312 df-poi-ro 414 df-kinra 485 |
This theorem is referenced by: du-kinra 488 gripau-kinra 489 pagbu-kinra 569 kihirnihi-kinra 609 |
Copyright terms: Public domain | W3C validator |