Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  refl-kinra

Theorem refl-kinra 445
Description: If a selbri is reflexive over any metasyntactic terbri, then it is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.)
Hypothesis
Ref Expression
refl-kinra.0da bu'a da
Assertion
Ref Expression
refl-kinra1 ka ce'u bu'a ce'u kei kinra ko'e

Proof of Theorem refl-kinra
StepHypRef Expression
1 refl-kinra.0 . . . 4da bu'a da
21ckiniri 277 . . 3da ckini da 1 ka ce'u bu'a ce'u kei
32poi-gen 375 . 2ro da poi ke'a cmima ko'e ku'o zo'u da ckini da 1 ka ce'u bu'a ce'u kei
43kinrari 444 11 ka ce'u bu'a ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  cmima sbcmima 246  ce'u sc 266  1 spk 267
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-gen1 179
This theorem depends on definitions:  df-go 52  df-ckini 275  df-poi-ro 372  df-kinra 443
This theorem is referenced by:  du-kinra  446  gripau-kinra  447  pagbu-kinra  527  kihirnihi-kinra  567
  Copyright terms: Public domain W3C validator