![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > refl-kinra |
Description: If a selbri is reflexive over any metasyntactic terbri, then it is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.) |
Ref | Expression |
---|---|
refl-kinra.0 | ⊢ da bu'a da |
Ref | Expression |
---|---|
refl-kinra | ⊢ pa ka ce'u bu'a ce'u kei kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refl-kinra.0 | . . . 4 ⊢ da bu'a da | |
2 | 1 | ckiniri 351 | . . 3 ⊢ da ckini da pa ka ce'u bu'a ce'u kei |
3 | 2 | poi-gen 468 | . 2 ⊢ ro da poi ke'a cmima ko'e ku'o zo'u da ckini da pa ka ce'u bu'a ce'u kei |
4 | 3 | kinrari 541 | 1 ⊢ pa ka ce'u bu'a ce'u kei kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 cmima sbcmima 319 ce'u sc 340 pa spk 341 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 |
This theorem depends on definitions: df-go 83 df-ckini 349 df-poi-ro 465 df-kinra 540 |
This theorem is referenced by: du-kinra 543 gripau-kinra 544 pagbu-kinra 631 kihirnihi-kinra 680 |
Copyright terms: Public domain | W3C validator |