Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  refl-kinra

Theorem refl-kinra 487
Description: If a selbri is reflexive over any metasyntactic terbri, then it is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.)
Hypothesis
Ref Expression
refl-kinra.0da bu'a da
Assertion
Ref Expression
refl-kinra1 ka ce'u bu'a ce'u kei kinra ko'e

Proof of Theorem refl-kinra
StepHypRef Expression
1 refl-kinra.0 . . . 4da bu'a da
21ckiniri 314 . . 3da ckini da 1 ka ce'u bu'a ce'u kei
32poi-gen 417 . 2ro da poi ke'a cmima ko'e ku'o zo'u da ckini da 1 ka ce'u bu'a ce'u kei
43kinrari 486 11 ka ce'u bu'a ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  cmima sbcmima 282  ce'u sc 303  1 spk 304
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen1 193
This theorem depends on definitions:  df-go 61  df-ckini 312  df-poi-ro 414  df-kinra 485
This theorem is referenced by:  du-kinra  488  gripau-kinra  489  pagbu-kinra  569  kihirnihi-kinra  609
  Copyright terms: Public domain W3C validator