![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > pagbu-kinra |
Description: {pagbu} is reflexive over any domain. (Contributed by la korvo, 31-Aug-2024.) |
Ref | Expression |
---|---|
pagbu-kinra | ⊢ pa ka ce'u pagbu ce'u kei kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pagbu-refl 630 | . 2 ⊢ da pagbu da | |
2 | 1 | refl-kinra 542 | 1 ⊢ pa ka ce'u pagbu ce'u kei kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: pagbu sbpagbu 629 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 ax-pagbu-refl 630 |
This theorem depends on definitions: df-go 83 df-ckini 349 df-poi-ro 465 df-kinra 540 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |