brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > pagbu-kinra |
Description: {pagbu} is reflexive over any domain. (Contributed by la korvo, 31-Aug-2024.) |
Ref | Expression |
---|---|
pagbu-kinra | ⊢ 1 ka ce'u pagbu ce'u kei kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pagbu-refl 526 | . 2 ⊢ da pagbu da | |
2 | 1 | refl-kinra 445 | 1 ⊢ 1 ka ce'u pagbu ce'u kei kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: pagbu sbpagbu 525 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 ax-gen1 179 ax-pagbu-refl 526 |
This theorem depends on definitions: df-go 52 df-ckini 275 df-poi-ro 372 df-kinra 443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |