brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > pagbu-kinra |
Description: {pagbu} is reflexive over any domain. (Contributed by la korvo, 31-Aug-2024.) |
Ref | Expression |
---|---|
pagbu-kinra | ⊢ 1 ka ce'u pagbu ce'u kei kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pagbu-refl 568 | . 2 ⊢ da pagbu da | |
2 | 1 | refl-kinra 487 | 1 ⊢ 1 ka ce'u pagbu ce'u kei kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: pagbu sbpagbu 567 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 ax-gen1 193 ax-pagbu-refl 568 |
This theorem depends on definitions: df-go 61 df-ckini 312 df-poi-ro 414 df-kinra 485 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |