Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  kihirnihi-kinra

Theorem kihirnihi-kinra 567
Description: {ki'irni'i} is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.)
Assertion
Ref Expression
kihirnihi-kinra1 ka ce'u ki'irni'i ce'u kei kinra ko'e

Proof of Theorem kihirnihi-kinra
Dummy variable da is distinct from all other variables.
StepHypRef Expression
1 kihirnihi-refl 566 . 2da ki'irni'i da
21refl-kinra 445 11 ka ce'u ki'irni'i ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  ki'irni'i sbkihirnihi 564
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-gen1 179
This theorem depends on definitions:  df-go 52  df-na.a 78  df-ckini 275  df-te 323  df-poi-ro 372  df-kinra 443  df-kihirnihi 565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator