![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > kihirnihi-kinra |
Description: {ki'irni'i} is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.) |
Ref | Expression |
---|---|
kihirnihi-kinra | ⊢ pa ka ce'u ki'irni'i ce'u kei kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kihirnihi-refl 679 | . 2 ⊢ da ki'irni'i da | |
2 | 1 | refl-kinra 542 | 1 ⊢ pa ka ce'u ki'irni'i ce'u kei kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: ki'irni'i sbkihirnihi 677 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 |
This theorem depends on definitions: df-go 83 df-na.a 110 df-ckini 349 df-te 397 df-poi-ro 465 df-kinra 540 df-kihirnihi 678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |