Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  kihirnihi-kinra

Theorem kihirnihi-kinra 680
Description: {ki'irni'i} is reflexive over any domain. (Contributed by la korvo, 13-Aug-2024.)
Assertion
Ref Expression
kihirnihi-kinrapa ka ce'u ki'irni'i ce'u kei kinra ko'e

Proof of Theorem kihirnihi-kinra
Dummy variable da is distinct from all other variables.
StepHypRef Expression
1 kihirnihi-refl 679 . 2da ki'irni'i da
21refl-kinra 542 1pa ka ce'u ki'irni'i ce'u kei kinra ko'e
Colors of variables: sumti selbri bridi
Syntax hints:   ki'irni'i sbkihirnihi 677
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen1 224
This theorem depends on definitions:  df-go 83  df-na.a 110  df-ckini 349  df-te 397  df-poi-ro 465  df-kinra 540  df-kihirnihi 678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator