![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > kinrari |
Description: Reverse inference form of df-kinra 540 (Contributed by la korvo, 25-Jun-2024.) |
Ref | Expression |
---|---|
kinrari.0 | ⊢ ro da poi ke'a cmima ko'e ku'o zo'u da ckini da ko'a |
Ref | Expression |
---|---|
kinrari | ⊢ ko'a kinra ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kinrari.0 | . 2 ⊢ ro da poi ke'a cmima ko'e ku'o zo'u da ckini da ko'a | |
2 | df-kinra 540 | . 2 ⊢ go ko'a kinra ko'e gi ro da poi ke'a cmima ko'e ku'o zo'u da ckini da ko'a | |
3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a kinra ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 cmima sbcmima 319 ckini sbckini 347 ro brdp 463 kinra sbkinra 539 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-kinra 540 |
This theorem is referenced by: refl-kinra 542 |
Copyright terms: Public domain | W3C validator |