Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  sei

Theorem sei 169
Description: From example 11.1-2 of [CLL] p. 5, where {mi prami do} and {do se prami mi} are equivalent. Inference form of df-se 168 (Contributed by la korvo, 17-Jul-2023.)
Hypothesis
Ref Expression
sei.0ko'e se bu'a ko'a
Assertion
Ref Expression
seiko'a bu'a ko'e

Proof of Theorem sei
StepHypRef Expression
1 sei.0 . 2ko'e se bu'a ko'a
2 df-se 168 . 2go ko'e se bu'a ko'a gi ko'a bu'a ko'e
31, 2bi 69 1ko'a bu'a ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  se sbs 167
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 34
This theorem depends on definitions:  df-go 52  df-se 168
This theorem is referenced by:  se-invo  171  se-du-elim  205  pameiii  255  gripauris  263  gripau-refl  264  zihoit  435
  Copyright terms: Public domain W3C validator