| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > seri | |||
| Description: From example 11.1-2 of [CLL] p. 5, where {mipramido} and {do se pramimi} are equivalent. Reverse inference form of df-se 213 (Contributed by la korvo, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| seri.0 | ⊢ ko'a bu'a ko'e |
| Ref | Expression |
|---|---|
| seri | ⊢ ko'e se bu'a ko'a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seri.0 | . 2 ⊢ ko'a bu'a ko'e | |
| 2 | df-se 213 | . 2 ⊢ go ko'e se bu'a ko'a gi ko'a bu'a ko'e | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'e se bu'a ko'a |
| Colors of variables: sumti selbri bridi |
| Syntax hints: se sbs 212 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-se 213 |
| This theorem is referenced by: pameiii 329 gripauis 335 ckini-se 352 zihoit 531 |
| Copyright terms: Public domain | W3C validator |