Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  seri

Theorem seri 170
Description: From example 11.1-2 of [CLL] p. 5, where {mi prami do} and {do se prami mi} are equivalent. Reverse inference form of df-se 168 (Contributed by la korvo, 17-Jul-2023.)
Hypothesis
Ref Expression
seri.0ko'a bu'a ko'e
Assertion
Ref Expression
seriko'e se bu'a ko'a

Proof of Theorem seri
StepHypRef Expression
1 seri.0 . 2ko'a bu'a ko'e
2 df-se 168 . 2go ko'e se bu'a ko'a gi ko'a bu'a ko'e
31, 2bi-rev 70 1ko'e se bu'a ko'a
Colors of variables: sumti selbri bridi
Syntax hints:  se sbs 167
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-se 168
This theorem is referenced by:  pameiii  255  gripauis  261  ckini-se  278  zihoit  435
  Copyright terms: Public domain W3C validator