brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > seri |
Description: From example 11.1-2 of [CLL] p. 5, where {mi prami do} and {do se prami mi} are equivalent. Reverse inference form of df-se 168 (Contributed by la korvo, 17-Jul-2023.) |
Ref | Expression |
---|---|
seri.0 | ⊢ ko'a bu'a ko'e |
Ref | Expression |
---|---|
seri | ⊢ ko'e se bu'a ko'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seri.0 | . 2 ⊢ ko'a bu'a ko'e | |
2 | df-se 168 | . 2 ⊢ go ko'e se bu'a ko'a gi ko'a bu'a ko'e | |
3 | 1, 2 | bi-rev 70 | 1 ⊢ ko'e se bu'a ko'a |
Colors of variables: sumti selbri bridi |
Syntax hints: se sbs 167 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 df-se 168 |
This theorem is referenced by: pameiii 255 gripauis 261 ckini-se 278 zihoit 435 |
Copyright terms: Public domain | W3C validator |