| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ckini-se | |||
| Description: {se} can be inserted underneath ckini3. Example theorem from early draft of la brismu. (Contributed by la korvo, 12-Jul-2023.) |
| Ref | Expression |
|---|---|
| ckini-se.0 | ⊢ ko'a ckini ko'e pa ka ce'u bu'a ce'u kei |
| Ref | Expression |
|---|---|
| ckini-se | ⊢ ko'e ckini ko'a pa ka ce'u se bu'a ce'u kei |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ckini-se.0 | . . . 4 ⊢ ko'a ckini ko'e pa ka ce'u bu'a ce'u kei | |
| 2 | 1 | ckinii 350 | . . 3 ⊢ ko'a bu'a ko'e |
| 3 | 2 | seri 215 | . 2 ⊢ ko'e se bu'a ko'a |
| 4 | 3 | ckiniri 351 | 1 ⊢ ko'e ckini ko'a pa ka ce'u se bu'a ce'u kei |
| Colors of variables: sumti selbri bridi |
| Syntax hints: se sbs 212 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-se 213 df-ckini 349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |