![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > nibli-refl |
Description: {nibli} is reflexive. (Contributed by la korvo, 19-Jul-2024.) |
Ref | Expression |
---|---|
nibli-refl | ⊢ pa du'u broda kei nibli pa du'u broda kei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ganai broda gi broda | |
2 | 1 | nibliri 509 | 1 ⊢ pa du'u broda kei nibli pa du'u broda kei |
Colors of variables: sumti selbri bridi |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-nibli 506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |