Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  nibliri

Theorem nibliri 455
Description: Reverse inference form of df-nibli 452 (Contributed by la korvo, 19-Jul-2024.)
Hypothesis
Ref Expression
nibliri.0ganai broda gi brode
Assertion
Ref Expression
nibliri1 du'u broda kei nibli 1 du'u brode kei

Proof of Theorem nibliri
StepHypRef Expression
1 nibliri.0 . 2ganai broda gi brode
2 df-nibli 452 . 2go 1 du'u broda kei nibli 1 du'u brode kei gi ganai broda gi brode
31, 2bi-rev 80 11 du'u broda kei nibli 1 du'u brode kei
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  1 sdu 437  nibli sbnibli 451
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-nibli 452
This theorem is referenced by:  nibli-refl  456
  Copyright terms: Public domain W3C validator