brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > nibliri |
Description: Reverse inference form of df-nibli 452 (Contributed by la korvo, 19-Jul-2024.) |
Ref | Expression |
---|---|
nibliri.0 | ⊢ ganai broda gi brode |
Ref | Expression |
---|---|
nibliri | ⊢ 1 du'u broda kei nibli 1 du'u brode kei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nibliri.0 | . 2 ⊢ ganai broda gi brode | |
2 | df-nibli 452 | . 2 ⊢ go 1 du'u broda kei nibli 1 du'u brode kei gi ganai broda gi brode | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ 1 du'u broda kei nibli 1 du'u brode kei |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 1 sdu 437 nibli sbnibli 451 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-nibli 452 |
This theorem is referenced by: nibli-refl 456 |
Copyright terms: Public domain | W3C validator |