![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > nibliri |
Description: Reverse inference form of df-nibli 506 (Contributed by la korvo, 19-Jul-2024.) |
Ref | Expression |
---|---|
nibliri.0 | ⊢ ganai broda gi brode |
Ref | Expression |
---|---|
nibliri | ⊢ pa du'u broda kei nibli pa du'u brode kei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nibliri.0 | . 2 ⊢ ganai broda gi brode | |
2 | df-nibli 506 | . 2 ⊢ go pa du'u broda kei nibli pa du'u brode kei gi ganai broda gi brode | |
3 | 1, 2 | bi-rev 102 | 1 ⊢ pa du'u broda kei nibli pa du'u brode kei |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 pa sdu 489 nibli sbnibli 505 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-nibli 506 |
This theorem is referenced by: nibli-refl 510 |
Copyright terms: Public domain | W3C validator |