| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > syldan | |||
| Description: A syllogism flattening a nested pair. (Contributed by la korvo, 9-Jul-2025.) |
| Ref | Expression |
|---|---|
| syldan.0 | ⊢ ganai ge broda gi brode gi brodi |
| syldan.1 | ⊢ ganai ge broda gi brodi gi brodo |
| Ref | Expression |
|---|---|
| syldan | ⊢ ganai ge broda gi brode gi brodo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldan.0 | . 2 ⊢ ganai ge broda gi brode gi brodi | |
| 2 | syldan.1 | . . . 4 ⊢ ganai ge broda gi brodi gi brodo | |
| 3 | 2 | uncur-swap12 62 | . . 3 ⊢ ganai brodi gi ganai broda gi brodo |
| 4 | 3 | weakard 64 | . 2 ⊢ ganai brodi gi ganai ge broda gi brode gi brodo |
| 5 | 1, 4 | mpcom 30 | 1 ⊢ ganai ge broda gi brode gi brodo |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ge bge 47 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-in 50 |
| This theorem is referenced by: sylan2 68 |
| Copyright terms: Public domain | W3C validator |