Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  go-com

Theorem go-com 65
Description: {go} commutes. (Contributed by la korvo, 17-Aug-2023.)
Assertion
Ref Expression
go-comgo go broda gi brode gi go brode gi broda

Proof of Theorem go-com
StepHypRef Expression
1 go-com-lem 64 . 2ganai go broda gi brode gi go brode gi broda
2 go-com-lem 64 . 2ganai go brode gi broda gi go broda gi brode
31, 2iso 56 1go go broda gi brode gi go brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  go bgo 51
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  o-com  156
  Copyright terms: Public domain W3C validator