brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > uncur |
Description: The natural uncurry (or "export") for any well-formed statement. Theorem ex in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
uncur.0 | ⊢ ganai ge broda gi brode gi brodi |
Ref | Expression |
---|---|
uncur | ⊢ ganai broda gi ganai brode gi brodi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ge-in 36 | . 2 ⊢ ganai broda gi ganai brode gi ge broda gi brode | |
2 | uncur.0 | . 2 ⊢ ganai ge broda gi brode gi brodi | |
3 | 1, 2 | syl6 22 | 1 ⊢ ganai broda gi ganai brode gi brodi |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 33 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-in 36 |
This theorem is referenced by: syl2anc 47 bi3 59 subeq-lem1 353 nat-ind-cur 493 |
Copyright terms: Public domain | W3C validator |