Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  qi2i

Theorem qi2i 189
Description: Inference form of ax-qi2 188 (Contributed by la korvo, 23-Jun-2024.)
Hypothesis
Ref Expression
qi2i.0ro bu'a zo'u ganai broda gi brode
Assertion
Ref Expression
qi2iganai ro bu'a zo'u broda gi ro bu'a zo'u brode

Proof of Theorem qi2i
StepHypRef Expression
1 qi2i.0 . 2ro bu'a zo'u ganai broda gi brode
2 ax-qi2 188 . 2ganai ro bu'a zo'u ganai broda gi brode gi ganai ro bu'a zo'u broda gi ro bu'a zo'u brode
31, 2ax-mp 10 1ganai ro bu'a zo'u broda gi ro bu'a zo'u brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ro brb 178
This theorem was proved from axioms:  ax-mp 10  ax-qi2 188
This theorem is referenced by:  qi2-mp  190
  Copyright terms: Public domain W3C validator