Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gonaii

Theorem gonaii 299
Description: Inference form of df-gonai 298 (Contributed by la korvo, 8-Aug-2023.)
Hypothesis
Ref Expression
gonaii.0gonai broda gi brode
Assertion
Ref Expression
gonaiige ga broda gi brode gi naku ge broda gi brode

Proof of Theorem gonaii
StepHypRef Expression
1 gonaii.0 . 2gonai broda gi brode
2 df-gonai 298 . 2go gonai broda gi brode gi ge ga broda gi brode gi naku ge broda gi brode
31, 2bi 101 1ge ga broda gi brode gi naku ge broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:   ge bge 47   ga bga 160   naku bnk 272   gonai bgon 297
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-gonai 298
This theorem is referenced by:  gonaiil  300  gonaiir  301
  Copyright terms: Public domain W3C validator