brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > con2d |
Description: A contrapositive deduction. (Contributed by la korvo, 1-Jan-2025.) |
Ref | Expression |
---|---|
con2d.1 | ⊢ ganai broda gi ganai brode gi naku brodi |
Ref | Expression |
---|---|
con2d | ⊢ ganai broda gi ganai brodi gi naku brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 | . . . 4 ⊢ ganai broda gi ganai brode gi naku brodi | |
2 | ax-efq 248 | . . . 4 ⊢ ganai naku brodi gi ganai brodi gi naku brode | |
3 | 1, 2 | syl6 24 | . . 3 ⊢ ganai broda gi ganai brode gi ganai brodi gi naku brode |
4 | 3 | ganai-swap23 41 | . 2 ⊢ ganai broda gi ganai brodi gi ganai brode gi naku brode |
5 | ax-sdo 245 | . 2 ⊢ ganai ganai brode gi naku brode gi naku brode | |
6 | 4, 5 | syl6 24 | 1 ⊢ ganai broda gi ganai brodi gi naku brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 naku bnk 236 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-sdo 245 ax-efq 248 |
This theorem is referenced by: mt2d 253 |
Copyright terms: Public domain | W3C validator |