| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > con2d | |||
| Description: A contrapositive deduction. (Contributed by la korvo, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| con2d.1 | ⊢ ganai broda gi ganai brode gi naku brodi |
| Ref | Expression |
|---|---|
| con2d | ⊢ ganai broda gi ganai brodi gi naku brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 | . . . 4 ⊢ ganai broda gi ganai brode gi naku brodi | |
| 2 | ax-efq 284 | . . . 4 ⊢ ganai naku brodi gi ganai brodi gi naku brode | |
| 3 | 1, 2 | syl6 25 | . . 3 ⊢ ganai broda gi ganai brode gi ganai brodi gi naku brode |
| 4 | 3 | ganai-swap23 43 | . 2 ⊢ ganai broda gi ganai brodi gi ganai brode gi naku brode |
| 5 | ax-sdo 281 | . 2 ⊢ ganai ganai brode gi naku brode gi naku brode | |
| 6 | 4, 5 | syl6 25 | 1 ⊢ ganai broda gi ganai brodi gi naku brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 naku bnk 272 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-sdo 281 ax-efq 284 |
| This theorem is referenced by: mt2d 290 |
| Copyright terms: Public domain | W3C validator |