Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  con2d

Theorem con2d 252
Description: A contrapositive deduction. (Contributed by la korvo, 1-Jan-2025.)
Hypothesis
Ref Expression
con2d.1ganai broda gi ganai brode gi naku brodi
Assertion
Ref Expression
con2dganai broda gi ganai brodi gi naku brode

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4ganai broda gi ganai brode gi naku brodi
2 ax-efq 248 . . . 4ganai naku brodi gi ganai brodi gi naku brode
31, 2syl6 24 . . 3ganai broda gi ganai brode gi ganai brodi gi naku brode
43ganai-swap23 41 . 2ganai broda gi ganai brodi gi ganai brode gi naku brode
5 ax-sdo 245 . 2ganai ganai brode gi naku brode gi naku brode
64, 5syl6 24 1ganai broda gi ganai brodi gi naku brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  naku bnk 236
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-sdo 245  ax-efq 248
This theorem is referenced by:  mt2d  253
  Copyright terms: Public domain W3C validator