Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  con2d

Theorem con2d 289
Description: A contrapositive deduction. (Contributed by la korvo, 1-Jan-2025.)
Hypothesis
Ref Expression
con2d.1ganai broda gi ganai brode gi naku brodi
Assertion
Ref Expression
con2dganai broda gi ganai brodi gi naku brode

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4ganai broda gi ganai brode gi naku brodi
2 ax-efq 284 . . . 4ganai naku brodi gi ganai brodi gi naku brode
31, 2syl6 25 . . 3ganai broda gi ganai brode gi ganai brodi gi naku brode
43ganai-swap23 43 . 2ganai broda gi ganai brodi gi ganai brode gi naku brode
5 ax-sdo 281 . 2ganai ganai brode gi naku brode gi naku brode
64, 5syl6 25 1ganai broda gi ganai brodi gi naku brode
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   naku bnk 272
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-sdo 281  ax-efq 284
This theorem is referenced by:  mt2d  290
  Copyright terms: Public domain W3C validator