| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > mt2d | |||
| Description: Deduction form of modus tollens. (Contributed by la korvo, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ ganai broda gi brode |
| mt2d.2 | ⊢ ganai broda gi ganai brodi gi naku brode |
| Ref | Expression |
|---|---|
| mt2d | ⊢ ganai broda gi naku brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ ganai broda gi brode | |
| 2 | mt2d.2 | . . 3 ⊢ ganai broda gi ganai brodi gi naku brode | |
| 3 | 2 | con2d 289 | . 2 ⊢ ganai broda gi ganai brode gi naku brodi |
| 4 | 1, 3 | mpd 18 | 1 ⊢ ganai broda gi naku brodi |
| Colors of variables: sumti selbri bridi |
| Syntax hints: naku bnk 272 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-sdo 281 ax-efq 284 |
| This theorem is referenced by: nsyl3 291 |
| Copyright terms: Public domain | W3C validator |