Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ro1-coms

Theorem ro1-coms 213
Description: Swap quantifiers on the antecedent. (Contributed by la korvo, 4-Jan-2025.)
Hypothesis
Ref Expression
ro1-coms.0ganai ro da zo'u ro de zo'u broda gi brode
Assertion
Ref Expression
ro1-comsganai ro de zo'u ro da zo'u broda gi brode
Distinct variable group:   da ,de

Proof of Theorem ro1-coms
StepHypRef Expression
1 ax-ro1-com 212 . 2ganai ro de zo'u ro da zo'u broda gi ro da zo'u ro de zo'u broda
2 ro1-coms.0 . 2ganai ro da zo'u ro de zo'u broda gi brode
31, 2syl 20 1ganai ro de zo'u ro da zo'u broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:  ro brd 191
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ro1-com 212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator