| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > lnci | |||
| Description: The law of non-contradiction. If a bridi is simultaneously inhabited and uninhabited, then we reach an absurdity. (Contributed by la korvo, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| lnci.0 | ⊢ ge broda gi naku broda |
| Ref | Expression |
|---|---|
| lnci | ⊢ gai'o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnci.0 | . . 3 ⊢ ge broda gi naku broda | |
| 2 | ge-com 142 | . . 3 ⊢ go ge broda gi naku broda gi ge naku broda gi broda | |
| 3 | 1, 2 | bi 101 | . 2 ⊢ ge naku broda gi broda |
| 4 | naku-uncur 274 | . 2 ⊢ ganai ge naku broda gi broda gi gai'o | |
| 5 | 3, 4 | ax-mp 10 | 1 ⊢ gai'o |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ge bge 47 gai'o bgaiho 271 naku bnk 272 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-naku 273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |