| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ge-com | |||
| Description: {ge} is commutative. (Contributed by la korvo, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| ge-com | ⊢ go ge broda gi brode gi ge brode gi broda |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge-com-lem 141 | . 2 ⊢ ganai ge broda gi brode gi ge brode gi broda | |
| 2 | ge-com-lem 141 | . 2 ⊢ ganai ge brode gi broda gi ge broda gi brode | |
| 3 | 1, 2 | iso 87 | 1 ⊢ go ge broda gi brode gi ge brode gi broda |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ge bge 47 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: e-com 150 lnci 276 |
| Copyright terms: Public domain | W3C validator |