brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > ge-com |
Description: {ge} is commutative. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
ge-com | ⊢ go ge broda gi brode gi ge brode gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge-com-lem 109 | . 2 ⊢ ganai ge broda gi brode gi ge brode gi broda | |
2 | ge-com-lem 109 | . 2 ⊢ ganai ge brode gi broda gi ge broda gi brode | |
3 | 1, 2 | iso 56 | 1 ⊢ go ge broda gi brode gi ge brode gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 33 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 |
This theorem is referenced by: lnci 214 |
Copyright terms: Public domain | W3C validator |