Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ge-com

Theorem ge-com 142
Description: {ge} is commutative. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ge-comgo ge broda gi brode gi ge brode gi broda

Proof of Theorem ge-com
StepHypRef Expression
1 ge-com-lem 141 . 2ganai ge broda gi brode gi ge brode gi broda
2 ge-com-lem 141 . 2ganai ge brode gi broda gi ge broda gi brode
31, 2iso 87 1go ge broda gi brode gi ge brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   ge bge 47
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83
This theorem is referenced by:  e-com  150  lnci  276
  Copyright terms: Public domain W3C validator