| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ge-go | |||
| Description: Conjunction implies biimplication. (Contributed by la korvo, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| ge-go.0 | ⊢ ge broda gi brode |
| Ref | Expression |
|---|---|
| ge-go | ⊢ go broda gi brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge-go.0 | . . 3 ⊢ ge broda gi brode | |
| 2 | ge-ganai 57 | . . 3 ⊢ ganai ge broda gi brode gi ganai broda gi brode | |
| 3 | 1, 2 | ax-mp 10 | . 2 ⊢ ganai broda gi brode |
| 4 | ge-com-lem 141 | . . . 4 ⊢ ganai ge broda gi brode gi ge brode gi broda | |
| 5 | 1, 4 | ax-mp 10 | . . 3 ⊢ ge brode gi broda |
| 6 | ge-ganai 57 | . . 3 ⊢ ganai ge brode gi broda gi ganai brode gi broda | |
| 7 | 5, 6 | ax-mp 10 | . 2 ⊢ ganai brode gi broda |
| 8 | 3, 7 | iso 87 | 1 ⊢ go broda gi brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 ge bge 47 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: simsa-mintu 379 |
| Copyright terms: Public domain | W3C validator |