Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ge-go

Theorem ge-go 111
Description: Conjunction implies biimplication. (Contributed by la korvo, 25-Jun-2024.)
Hypothesis
Ref Expression
ge-go.0ge broda gi brode
Assertion
Ref Expression
ge-gogo broda gi brode

Proof of Theorem ge-go
StepHypRef Expression
1 ge-go.0 . . 3ge broda gi brode
2 ge-ganai 42 . . 3ganai ge broda gi brode gi ganai broda gi brode
31, 2ax-mp 10 . 2ganai broda gi brode
4 ge-com-lem 109 . . . 4ganai ge broda gi brode gi ge brode gi broda
51, 4ax-mp 10 . . 3ge brode gi broda
6 ge-ganai 42 . . 3ganai ge brode gi broda gi ganai brode gi broda
75, 6ax-mp 10 . 2ganai brode gi broda
83, 7iso 56 1go broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 33
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  simsa-mintu  305
  Copyright terms: Public domain W3C validator