![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > nakuri |
Description: Reverse inference form of df-naku 273 (Contributed by la korvo, 9-Aug-2023.) |
Ref | Expression |
---|---|
nakuri.0 | ⊢ ganai broda gi gai'o |
Ref | Expression |
---|---|
nakuri | ⊢ naku broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nakuri.0 | . 2 ⊢ ganai broda gi gai'o | |
2 | df-naku 273 | . 2 ⊢ go naku broda gi ganai broda gi gai'o | |
3 | 1, 2 | bi-rev 102 | 1 ⊢ naku broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 gai'o bgaiho 271 naku bnk 272 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-naku 273 |
This theorem is referenced by: na-gaiho 280 |
Copyright terms: Public domain | W3C validator |