| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > alrimih | |||
| Description: An inference. (Contributed by la korvo, 9-Jul-2025.) |
| Ref | Expression |
|---|---|
| alrimih.0 | ⊢ ganai broda gi ro da zo'u broda |
| alrimih.1 | ⊢ ganai broda gi brode |
| Ref | Expression |
|---|---|
| alrimih | ⊢ ganai broda gi ro da zo'u brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.0 | . 2 ⊢ ganai broda gi ro da zo'u broda | |
| 2 | alrimih.1 | . . 3 ⊢ ganai broda gi brode | |
| 3 | 2 | qi1q 237 | . 2 ⊢ ganai ro da zo'u broda gi ro da zo'u brode |
| 4 | 1, 3 | syl 21 | 1 ⊢ ganai broda gi ro da zo'u brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ro brd 222 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-gen1 224 ax-qi1 234 |
| This theorem is referenced by: exlimdh 425 eximdh 428 |
| Copyright terms: Public domain | W3C validator |