| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > exlimdh | |||
| Description: Deduction converting universal quantification to existential quantification. (Contributed by la korvo, 9-Jul-2025.) |
| Ref | Expression |
|---|---|
| exlimdh.0 | ⊢ ganai broda gi ro da zo'u broda |
| exlimdh.1 | ⊢ ganai brodi gi ro da zo'u brodi |
| exlimdh.2 | ⊢ ganai broda gi ganai brode gi brodi |
| Ref | Expression |
|---|---|
| exlimdh | ⊢ ganai broda gi ganai su'o da zo'u brode gi brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdh.0 | . . 3 ⊢ ganai broda gi ro da zo'u broda | |
| 2 | exlimdh.2 | . . 3 ⊢ ganai broda gi ganai brode gi brodi | |
| 3 | 1, 2 | alrimih 238 | . 2 ⊢ ganai broda gi ro da zo'u ganai brode gi brodi |
| 4 | exlimdh.1 | . . 3 ⊢ ganai brodi gi ro da zo'u brodi | |
| 5 | 4 | eqih 422 | . 2 ⊢ go ro da zo'u ganai brode gi brodi gi ganai su'o da zo'u brode gi brodi |
| 6 | 3, 5 | sylib 105 | 1 ⊢ ganai broda gi ganai su'o da zo'u brode gi brodi |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 ro brd 222 su'o bsd 414 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-gen1 224 ax-qi1 234 ax-eq 420 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: exim 426 |
| Copyright terms: Public domain | W3C validator |