Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  eqih

Theorem eqih 385
Description: Reduced inference from ax-eq 383 (Contributed by la korvo, 22-Jun-2024.)
Hypothesis
Ref Expression
eqih.0ganai broda gi ro da zo'u broda
Assertion
Ref Expression
eqihgo ro da zo'u ganai brode gi broda gi ganai su'o da zo'u brode gi broda

Proof of Theorem eqih
StepHypRef Expression
1 eqih.0 . . 3ganai broda gi ro da zo'u broda
21ax-gen1 193 . 2ro da zo'u ganai broda gi ro da zo'u broda
32eqi 384 1go ro da zo'u ganai brode gi broda gi ganai su'o da zo'u brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ro brd 191
This theorem was proved from axioms:  ax-mp 10  ax-gen1 193  ax-eq 383
This theorem is referenced by:  wit  386
  Copyright terms: Public domain W3C validator