brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > eqi |
Description: Inference form of ax-eq 345 (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
eqi.0 | ⊢ ro da zo'u ganai broda gi ro da zo'u broda |
Ref | Expression |
---|---|
eqi | ⊢ go ro da zo'u ganai brode gi broda gi ganai su'o da zo'u brode gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqi.0 | . 2 ⊢ ro da zo'u ganai broda gi ro da zo'u broda | |
2 | ax-eq 345 | . 2 ⊢ ganai ro da zo'u ganai broda gi ro da zo'u broda gi go ro da zo'u ganai brode gi broda gi ganai su'o da zo'u brode gi broda | |
3 | 1, 2 | ax-mp 10 | 1 ⊢ go ro da zo'u ganai brode gi broda gi ganai su'o da zo'u brode gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 go bgo 51 ro brd 177 su'o bsd 340 |
This theorem was proved from axioms: ax-mp 10 ax-eq 345 |
This theorem is referenced by: eqih 347 |
Copyright terms: Public domain | W3C validator |