Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  exlimih

Theorem exlimih 424
Description: Convert universal quantification to existential quantification on top of an inference. (Contributed by la korvo, 9-Jul-2025.)
Hypotheses
Ref Expression
exlimih.0ganai brode gi ro da zo'u brode
exlimih.1ganai broda gi brode
Assertion
Ref Expression
exlimihganai su'o da zo'u broda gi brode

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.0 . . 3ganai brode gi ro da zo'u brode
21eqih 422 . 2go ro da zo'u ganai broda gi brode gi ganai su'o da zo'u broda gi brode
3 exlimih.1 . 2ganai broda gi brode
42, 3big1 226 1ganai su'o da zo'u broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   su'o bsd 414
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48  ax-gen1 224  ax-eq 420
This theorem depends on definitions:  df-go 83
This theorem is referenced by:  foml19.41  432
  Copyright terms: Public domain W3C validator