![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > exlimih |
Description: Convert universal quantification to existential quantification on top of an inference. (Contributed by la korvo, 9-Jul-2025.) |
Ref | Expression |
---|---|
exlimih.0 | ⊢ ganai brode gi ro da zo'u brode |
exlimih.1 | ⊢ ganai broda gi brode |
Ref | Expression |
---|---|
exlimih | ⊢ ganai su'o da zo'u broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimih.0 | . . 3 ⊢ ganai brode gi ro da zo'u brode | |
2 | 1 | eqih 422 | . 2 ⊢ go ro da zo'u ganai broda gi brode gi ganai su'o da zo'u broda gi brode |
3 | exlimih.1 | . 2 ⊢ ganai broda gi brode | |
4 | 2, 3 | big1 226 | 1 ⊢ ganai su'o da zo'u broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 su'o bsd 414 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 48 ax-gen1 224 ax-eq 420 |
This theorem depends on definitions: df-go 83 |
This theorem is referenced by: foml19.41 432 |
Copyright terms: Public domain | W3C validator |