Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  eximdh

Theorem eximdh 428
Description: Deductive form of exim 426 (Contributed by la korvo, 9-Jul-2025.)
Hypotheses
Ref Expression
eximdh.0ganai broda gi ro da zo'u broda
eximdh.1ganai broda gi ganai brode gi brodi
Assertion
Ref Expression
eximdhganai broda gi ganai su'o da zo'u brode gi su'o da zo'u brodi

Proof of Theorem eximdh
StepHypRef Expression
1 eximdh.0 . . 3ganai broda gi ro da zo'u broda
2 eximdh.1 . . 3ganai broda gi ganai brode gi brodi
31, 2alrimih 238 . 2ganai broda gi ro da zo'u ganai brode gi brodi
4 exim 426 . 2ganai ro da zo'u ganai brode gi brodi gi ganai su'o da zo'u brode gi su'o da zo'u brodi
53, 4syl 21 1ganai broda gi ganai su'o da zo'u brode gi su'o da zo'u brodi
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ro brd 222   su'o bsd 414
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen1 224  ax-spec1 228  ax-qi1 234  ax-ro1-nf 249  ax-eb 418  ax-eq 420
This theorem depends on definitions:  df-go 83
This theorem is referenced by:  foml19.41  432
  Copyright terms: Public domain W3C validator