Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  eximi

Theorem eximi 427
Description: Inference form of exim 426 (Contributed by la korvo, 9-Jul-2025.)
Hypothesis
Ref Expression
eximi.0ganai broda gi brode
Assertion
Ref Expression
eximiganai su'o da zo'u broda gi su'o da zo'u brode

Proof of Theorem eximi
StepHypRef Expression
1 exim 426 . 2ganai ro da zo'u ganai broda gi brode gi ganai su'o da zo'u broda gi su'o da zo'u brode
2 eximi.0 . 2ganai broda gi brode
31, 2mpg1 225 1ganai su'o da zo'u broda gi su'o da zo'u brode
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   su'o bsd 414
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen1 224  ax-spec1 228  ax-qi1 234  ax-ro1-nf 249  ax-eb 418  ax-eq 420
This theorem depends on definitions:  df-go 83
This theorem is referenced by:  ge-lex  430  ge-dist-ex  431  equs4  453
  Copyright terms: Public domain W3C validator