![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > eximi |
Description: Inference form of exim 426 (Contributed by la korvo, 9-Jul-2025.) |
Ref | Expression |
---|---|
eximi.0 | ⊢ ganai broda gi brode |
Ref | Expression |
---|---|
eximi | ⊢ ganai su'o da zo'u broda gi su'o da zo'u brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 426 | . 2 ⊢ ganai ro da zo'u ganai broda gi brode gi ganai su'o da zo'u broda gi su'o da zo'u brode | |
2 | eximi.0 | . 2 ⊢ ganai broda gi brode | |
3 | 1, 2 | mpg1 225 | 1 ⊢ ganai su'o da zo'u broda gi su'o da zo'u brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 su'o bsd 414 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 ax-spec1 228 ax-qi1 234 ax-ro1-nf 249 ax-eb 418 ax-eq 420 |
This theorem depends on definitions: df-go 83 |
This theorem is referenced by: ge-lex 430 ge-dist-ex 431 equs4 453 |
Copyright terms: Public domain | W3C validator |