brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > mp-ceihi |
Description: A proposition implied by {cei'i} is always true. (Contributed by la korvo, 4-Jan-2025.) |
Ref | Expression |
---|---|
mp-ceihi.0 | ⊢ ganai cei'i gi broda |
Ref | Expression |
---|---|
mp-ceihi | ⊢ broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceihi 232 | . 2 ⊢ cei'i | |
2 | mp-ceihi.0 | . 2 ⊢ ganai cei'i gi broda | |
3 | 1, 2 | ax-mp 10 | 1 ⊢ broda |
Colors of variables: sumti selbri bridi |
Syntax hints: cei'i bceihi 230 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 ax-gen2 195 ax-qi2 204 |
This theorem depends on definitions: df-go 61 df-o 167 df-du 215 df-ceihi 231 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |