Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  mp-ceihi

Theorem mp-ceihi 233
Description: A proposition implied by {cei'i} is always true. (Contributed by la korvo, 4-Jan-2025.)
Hypothesis
Ref Expression
mp-ceihi.0ganai cei'i gi broda
Assertion
Ref Expression
mp-ceihibroda

Proof of Theorem mp-ceihi
StepHypRef Expression
1 ceihi 232 . 2cei'i
2 mp-ceihi.0 . 2ganai cei'i gi broda
31, 2ax-mp 10 1broda
Colors of variables: sumti selbri bridi
Syntax hints:  cei'i bceihi 230
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen2 195  ax-qi2 204
This theorem depends on definitions:  df-go 61  df-o 167  df-du 215  df-ceihi 231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator