![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > ceihi |
Description: {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.) |
Ref | Expression |
---|---|
ceihi | ⊢ cei'i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-refl 256 | . 2 ⊢ ko'a du ko'a | |
2 | df-ceihi 267 | . 2 ⊢ go cei'i gi ko'a du ko'a | |
3 | 1, 2 | bi-rev 102 | 1 ⊢ cei'i |
Colors of variables: sumti selbri bridi |
Syntax hints: du sbdu 250 cei'i bceihi 266 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-qi2 239 |
This theorem depends on definitions: df-go 83 df-o 198 df-du 251 df-ceihi 267 |
This theorem is referenced by: mp-ceihi 269 ceihi-term 270 ceihi-nf 443 fatci-ceihi 504 |
Copyright terms: Public domain | W3C validator |