Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ceihi

Theorem ceihi 208
Description: {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.)
Assertion
Ref Expression
ceihicei'i

Proof of Theorem ceihi
StepHypRef Expression
1 du-refl 202 . 2ko'a du ko'a
2 df-ceihi 207 . 2go cei'i gi ko'a du ko'a
31, 2bi-rev 70 1cei'i
Colors of variables: sumti selbri bridi
Syntax hints:  du sbdu 196  cei'i bceihi 206
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-gen2 180  ax-qi2 188
This theorem depends on definitions:  df-go 52  df-o 153  df-du 197  df-ceihi 207
This theorem is referenced by:  ceihi-nf  365  fatci-ceihi  408
  Copyright terms: Public domain W3C validator