brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > ceihi |
Description: {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.) |
Ref | Expression |
---|---|
ceihi | ⊢ cei'i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-refl 202 | . 2 ⊢ ko'a du ko'a | |
2 | df-ceihi 207 | . 2 ⊢ go cei'i gi ko'a du ko'a | |
3 | 1, 2 | bi-rev 70 | 1 ⊢ cei'i |
Colors of variables: sumti selbri bridi |
Syntax hints: du sbdu 196 cei'i bceihi 206 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 ax-gen2 180 ax-qi2 188 |
This theorem depends on definitions: df-go 52 df-o 153 df-du 197 df-ceihi 207 |
This theorem is referenced by: ceihi-nf 365 fatci-ceihi 408 |
Copyright terms: Public domain | W3C validator |