Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ceihi

Theorem ceihi 232
Description: {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.)
Assertion
Ref Expression
ceihicei'i

Proof of Theorem ceihi
StepHypRef Expression
1 du-refl 220 . 2ko'a du ko'a
2 df-ceihi 231 . 2go cei'i gi ko'a du ko'a
31, 2bi-rev 80 1cei'i
Colors of variables: sumti selbri bridi
Syntax hints:  du sbdu 214  cei'i bceihi 230
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen2 195  ax-qi2 204
This theorem depends on definitions:  df-go 61  df-o 167  df-du 215  df-ceihi 231
This theorem is referenced by:  mp-ceihi  233  k-ceihi  234  ceihi-nf  404  fatci-ceihi  450
  Copyright terms: Public domain W3C validator