Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ceihi

Theorem ceihi 268
Description: {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.)
Assertion
Ref Expression
ceihicei'i

Proof of Theorem ceihi
StepHypRef Expression
1 du-refl 256 . 2ko'a du ko'a
2 df-ceihi 267 . 2go cei'i gi ko'a du ko'a
31, 2bi-rev 102 1cei'i
Colors of variables: sumti selbri bridi
Syntax hints:   du sbdu 250   cei'i bceihi 266
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen2 227  ax-qi2 239
This theorem depends on definitions:  df-go 83  df-o 198  df-du 251  df-ceihi 267
This theorem is referenced by:  mp-ceihi  269  ceihi-term  270  ceihi-nf  443  fatci-ceihi  504
  Copyright terms: Public domain W3C validator