Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  fatci-ceihi

Theorem fatci-ceihi 408
Description: {cei'i} is absolutely true when abstracted. (Contributed by la korvo, 10-Mar-2024.)
Assertion
Ref Expression
fatci-ceihi1 du'u cei'i kei fatci

Proof of Theorem fatci-ceihi
StepHypRef Expression
1 ceihi 208 . 2cei'i
21fatciri 407 11 du'u cei'i kei fatci
Colors of variables: sumti selbri bridi
Syntax hints:  cei'i bceihi 206
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-gen2 180  ax-qi2 188
This theorem depends on definitions:  df-go 52  df-o 153  df-du 197  df-ceihi 207  df-fatci 405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator