brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > fatci-ceihi |
Description: {cei'i} is absolutely true when abstracted. (Contributed by la korvo, 10-Mar-2024.) |
Ref | Expression |
---|---|
fatci-ceihi | ⊢ 1 du'u cei'i kei fatci |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceihi 208 | . 2 ⊢ cei'i | |
2 | 1 | fatciri 407 | 1 ⊢ 1 du'u cei'i kei fatci |
Colors of variables: sumti selbri bridi |
Syntax hints: cei'i bceihi 206 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 ax-gen2 180 ax-qi2 188 |
This theorem depends on definitions: df-go 52 df-o 153 df-du 197 df-ceihi 207 df-fatci 405 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |