![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > fatci-ceihi |
Description: {cei'i} is absolutely true when abstracted. (Contributed by la korvo, 10-Mar-2024.) |
Ref | Expression |
---|---|
fatci-ceihi | ⊢ pa du'u cei'i kei fatci |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceihi 268 | . 2 ⊢ cei'i | |
2 | 1 | fatciri 503 | 1 ⊢ pa du'u cei'i kei fatci |
Colors of variables: sumti selbri bridi |
Syntax hints: cei'i bceihi 266 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-qi2 239 |
This theorem depends on definitions: df-go 83 df-o 198 df-du 251 df-ceihi 267 df-fatci 501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |