| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > duri | |||
| Description: Reverse inference form of df-du 251 (Contributed by la korvo, 18-Jul-2023.) |
| Ref | Expression |
|---|---|
| duri.0 | ⊢ ro bu'a zo'u ko'a .o ko'e bu'a |
| Ref | Expression |
|---|---|
| duri | ⊢ ko'a du ko'e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | duri.0 | . 2 ⊢ ro bu'a zo'u ko'a .o ko'e bu'a | |
| 2 | df-du 251 | . 2 ⊢ go ko'a du ko'e gi ro bu'a zo'u ko'a .o ko'e bu'a | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a du ko'e |
| Colors of variables: sumti selbri bridi |
| Syntax hints: .o sjo 197 ro brb 223 du sbdu 250 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-du 251 |
| This theorem is referenced by: duris 255 |
| Copyright terms: Public domain | W3C validator |