brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > du-trans |
Description: {du} is transitive. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.) |
Ref | Expression |
---|---|
du-trans.0 | ⊢ ko'a du ko'e |
du-trans.1 | ⊢ ko'e du ko'i |
Ref | Expression |
---|---|
du-trans | ⊢ ko'a du ko'i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-trans.0 | . . . 4 ⊢ ko'a du ko'e | |
2 | 1 | duis 199 | . . 3 ⊢ go ko'a bu'a gi ko'e bu'a |
3 | du-trans.1 | . . . 4 ⊢ ko'e du ko'i | |
4 | 3 | duis 199 | . . 3 ⊢ go ko'e bu'a gi ko'i bu'a |
5 | 2, 4 | go-syl 68 | . 2 ⊢ go ko'a bu'a gi ko'i bu'a |
6 | 5 | duris 201 | 1 ⊢ ko'a du ko'i |
Colors of variables: sumti selbri bridi |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 ax-go-trans 67 ax-gen2 180 ax-spec2 183 ax-qi2 188 |
This theorem depends on definitions: df-go 52 df-o 153 df-du 197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |