![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > stdpc4 |
Description: The Axiom of Specialization: if a statement holds for all values, then it holds when substituted for any particular value. (Contributed by la korvo, 9-Jul-2025.) |
Ref | Expression |
---|---|
stdpc4 | ⊢ ganai ro da zo'u broda gi [ ko'a / da ] broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-k 11 | . . 3 ⊢ ganai broda gi ganai da du ko'a gi broda | |
2 | 1 | qi1q 237 | . 2 ⊢ ganai ro da zo'u broda gi ro da zo'u ganai da du ko'a gi broda |
3 | sub2 454 | . 2 ⊢ ganai ro da zo'u ganai da du ko'a gi broda gi [ ko'a / da ] broda | |
4 | 2, 3 | syl 21 | 1 ⊢ ganai ro da zo'u broda gi [ ko'a / da ] broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ro brd 222 du sbdu 250 [ bsub 446 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 ax-spec1 228 ax-qi1 234 ax-ro1-nf 249 ax-ex 416 ax-eb 418 ax-eq 420 |
This theorem depends on definitions: df-go 83 df-sub 447 |
This theorem is referenced by: subh 456 |
Copyright terms: Public domain | W3C validator |