Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  stdpc4

Theorem stdpc4 455
Description: The Axiom of Specialization: if a statement holds for all values, then it holds when substituted for any particular value. (Contributed by la korvo, 9-Jul-2025.)
Assertion
Ref Expression
stdpc4ganai ro da zo'u broda gi [ ko'a / da ] broda

Proof of Theorem stdpc4
StepHypRef Expression
1 ax-k 11 . . 3ganai broda gi ganai da du ko'a gi broda
21qi1q 237 . 2ganai ro da zo'u broda gi ro da zo'u ganai da du ko'a gi broda
3 sub2 454 . 2ganai ro da zo'u ganai da du ko'a gi broda gi [ ko'a / da ] broda
42, 3syl 21 1ganai ro da zo'u broda gi [ ko'a / da ] broda
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ro brd 222   du sbdu 250   [ bsub 446
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50  ax-gen1 224  ax-spec1 228  ax-qi1 234  ax-ro1-nf 249  ax-ex 416  ax-eb 418  ax-eq 420
This theorem depends on definitions:  df-go 83  df-sub 447
This theorem is referenced by:  subh  456
  Copyright terms: Public domain W3C validator