| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ckajii | |||
| Description: Inference form of df-ckaji 344 (Contributed by la korvo, 17-Jul-2023.) |
| Ref | Expression |
|---|---|
| ckajii.0 | ⊢ ko'a ckaji pa ka ce'u bo'a kei |
| Ref | Expression |
|---|---|
| ckajii | ⊢ ko'a bo'a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ckajii.0 | . 2 ⊢ ko'a ckaji pa ka ce'u bo'a kei | |
| 2 | df-ckaji 344 | . 2 ⊢ go ko'a ckaji pa ka ce'u bo'a kei gi ko'a bo'a | |
| 3 | 1, 2 | bi 101 | 1 ⊢ ko'a bo'a |
| Colors of variables: sumti selbri bridi |
| Syntax hints: btb 3 |
| This theorem was proved from axioms: ax-mp 10 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 df-ckaji 344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |