Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ckajii

Theorem ckajii 271
Description: Inference form of df-ckaji 270 (Contributed by la korvo, 17-Jul-2023.)
Hypothesis
Ref Expression
ckajii.0ko'a ckaji 1 ka ce'u bo'a kei
Assertion
Ref Expression
ckajiiko'a bo'a

Proof of Theorem ckajii
StepHypRef Expression
1 ckajii.0 . 2ko'a ckaji 1 ka ce'u bo'a kei
2 df-ckaji 270 . 2go ko'a ckaji 1 ka ce'u bo'a kei gi ko'a bo'a
31, 2bi 69 1ko'a bo'a
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 34
This theorem depends on definitions:  df-go 52  df-ckaji 270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator