brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > ckajii |
Description: Inference form of df-ckaji 270 (Contributed by la korvo, 17-Jul-2023.) |
Ref | Expression |
---|---|
ckajii.0 | ⊢ ko'a ckaji 1 ka ce'u bo'a kei |
Ref | Expression |
---|---|
ckajii | ⊢ ko'a bo'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ckajii.0 | . 2 ⊢ ko'a ckaji 1 ka ce'u bo'a kei | |
2 | df-ckaji 270 | . 2 ⊢ go ko'a ckaji 1 ka ce'u bo'a kei gi ko'a bo'a | |
3 | 1, 2 | bi 69 | 1 ⊢ ko'a bo'a |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 34 |
This theorem depends on definitions: df-go 52 df-ckaji 270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |