Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ge-idem

Theorem ge-idem 145
Description: {ge} is idempotent. (Contributed by la korvo, 15-Aug-2024.) (Strengthened by la korvo, 21-Aug-2024.)
Assertion
Ref Expression
ge-idemgo ge broda gi broda gi broda

Proof of Theorem ge-idem
StepHypRef Expression
1 ax-ge-le 48 . 2ganai ge broda gi broda gi broda
2 ge-diag 144 . 2ganai broda gi ge broda gi broda
31, 2iso 87 1go ge broda gi broda gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   ge bge 47
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator