![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > ge-idem |
Description: {ge} is idempotent. (Contributed by la korvo, 15-Aug-2024.) (Strengthened by la korvo, 21-Aug-2024.) |
Ref | Expression |
---|---|
ge-idem | ⊢ go ge broda gi broda gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ge-le 48 | . 2 ⊢ ganai ge broda gi broda gi broda | |
2 | ge-diag 144 | . 2 ⊢ ganai broda gi ge broda gi broda | |
3 | 1, 2 | iso 87 | 1 ⊢ go ge broda gi broda gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 47 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |