Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ge-idem

Theorem ge-idem 113
Description: {ge} is idempotent. (Contributed by la korvo, 15-Aug-2024.) (Strengthened by la korvo, 21-Aug-2024.)
Assertion
Ref Expression
ge-idemgo ge broda gi broda gi broda

Proof of Theorem ge-idem
StepHypRef Expression
1 ax-ge-le 34 . 2ganai ge broda gi broda gi broda
2 ge-diag 112 . 2ganai broda gi ge broda gi broda
31, 2iso 56 1go ge broda gi broda gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  ge bge 33
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator