Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gihanaii

Theorem gihanaii 138
Description: Inference form of df-gihanai 137 (Contributed by la korvo, 16-Aug-2023.)
Hypothesis
Ref Expression
gihanaii.0ko'a bo'e gi'anai bo'a
Assertion
Ref Expression
gihanaiiganai ko'a bo'a gi ko'a bo'e

Proof of Theorem gihanaii
StepHypRef Expression
1 gihanaii.0 . 2ko'a bo'e gi'anai bo'a
2 df-gihanai 137 . 2go ko'a bo'e gi'anai bo'a gi ganai ko'a bo'a gi ko'a bo'e
31, 2bi 101 1ganai ko'a bo'a gi ko'a bo'e
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3   ganai bgan 9   gi'anai tgihanai 136
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-gihanai 137
This theorem is referenced by:  gihanaiii  139
  Copyright terms: Public domain W3C validator