brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gihanaii |
Description: Inference form of df-gihanai 105 (Contributed by la korvo, 16-Aug-2023.) |
Ref | Expression |
---|---|
gihanaii.0 | ⊢ ko'a bo'e gi'anai bo'a |
Ref | Expression |
---|---|
gihanaii | ⊢ ganai ko'a bo'a gi ko'a bo'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gihanaii.0 | . 2 ⊢ ko'a bo'e gi'anai bo'a | |
2 | df-gihanai 105 | . 2 ⊢ go ko'a bo'e gi'anai bo'a gi ganai ko'a bo'a gi ko'a bo'e | |
3 | 1, 2 | bi 69 | 1 ⊢ ganai ko'a bo'a gi ko'a bo'e |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 ganai bgan 9 gi'anai tgihanai 104 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 34 |
This theorem depends on definitions: df-go 52 df-gihanai 105 |
This theorem is referenced by: gihanaiii 107 |
Copyright terms: Public domain | W3C validator |