Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gihanairi

Theorem gihanairi 108
Description: Inference form of df-gihanai 105 (Contributed by la korvo, 16-Aug-2023.)
Hypothesis
Ref Expression
gihanairi.0ganai ko'a bo'e gi ko'a bo'a
Assertion
Ref Expression
gihanairiko'a bo'a gi'anai bo'e

Proof of Theorem gihanairi
StepHypRef Expression
1 gihanairi.0 . 2ganai ko'a bo'e gi ko'a bo'a
2 df-gihanai 105 . 2go ko'a bo'a gi'anai bo'e gi ganai ko'a bo'e gi ko'a bo'a
31, 2bi-rev 70 1ko'a bo'a gi'anai bo'e
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3  ganai bgan 9  gi'anai tgihanai 104
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-gihanai 105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator